

2006 corn flea beetle control on corn with seed treatments in Kansas. Gerald Wilde, Kansas State University, Department of Entomology, Manhattan, KS Evaluation date: September 08, 2006

Pest:	Corn flea beetle, Chaetocnema pulicaria		
Crop:	Corn, 20 treatments		
Location:	Hesston, Kansas		
Hybrids:	Trt 1, 3-13: N67-D6		
	Trt 2, 14-20: TAX 13676		
Planting Date:	April 14, 2006		
Soil Characteristics:	To be obtained		
Plot Size:	1 row, 25 ft.		
Experimental Design:	Randomized Complete Block, 4 replications		
Planting Information:	Corn planted 1-2 inch depth. Soil in good moist condition		
	at planting, 30 inch rows, disc just before planting.		
Field History:	to be obtained		
Phytotoxicity:	None noted		
Evaluation:	Estimated amount of flea beetle leaf feeding on first leaf on		
	05/20/06. Feeding rating using 0-10 scale where $0 = no$		
	feeding, 1=0-10%, 2=10-20%, 3=20-30%, 4=30-40%,		
	5=40-50%		

Trt. No.	Treatment/ Product Name	Damage Rating (Mean ± SE)	Yield (bu/ac) (Mean ± SE)
1	Untreated check	$2.6 \pm 0.4a$	35.10 ± 3.86ab
2	Cruiser 5 FS @ 0.25 MGA/seed	$0.0 \pm 0.0c$	37.05 ± 3.77ab
3	Cruiser 5 FS @ 0.25 MGA/seed + Force 20 CS @ 5.0 GA/100 Kg seed	$0.2 \pm 0.1c$	37.70 ± 2.65ab
4	Cruiser 5 FS @ 0.25 MGA/seed + Force 20 CS @ 10.0 GA/100 Kg seed	$0.0 \pm 0.0 c$	$33.48 \pm 2.15 ab$
5	Cruiser 5 FS @ 0.25 MGA/seed + Force 20 CS @ 20.0 GA/100 Kg seed	$0.0\pm0.0c$	$33.15\pm2.16ab$
6	Cruiser 5 FS @ 0.25 MGA/seed + Force 20 CS @ 40.0 GA/100 Kg seed	$0.1\pm0.1\text{c}$	$43.55\pm2.93ab$
7	Cruiser 5 FS @ 0.25 MGA/seed + A13219 CS @ 5.0 GA/100 Kg seed	$0.0\pm0.0c$	$37.38 \pm 2.62 ab$
8	Cruiser 5 FS @ 0.25 MGA/seed + A13219 CS @ 10.0 GA/100 Kg seed	$0.0\pm0.0c$	$39.65\pm3.85ab$
9	Cruiser 5 FS @ 0.25 MGA/seed + A13219 CS @ 20.0 GA/100 Kg seed	$0.0 \pm 0.0c$	39.65 ± 4.64ab
10	Cruiser 5 FS @ 0.25 MGA/seed + A13219 CS @ 40.0 GA/100 Kg seed	$0.1 \pm 0.1c$	36.40 ± 3.31ab
11	Poncho 250 5 SC @ 0.25 MGA/seed	$0.0 \pm 0.0c$	41.60 ± 5.01ab
12	Poncho 600 @ 0.25 MGA/seed	$0.1 \pm 0.1c$	$43.88 \pm 3.16a$
13	Force 3 G @ 1.12 GA/100 row meter	$1.0 \pm 0.3b$	$36.08 \pm 2.97 ab$
14	Untreated check	$1.3 \pm 0.3 b$	$39.65 \pm 2.46ab$
15	V-10170 2.32 SC @ 0.25 MGA/seed	$0.0 \pm 0.0c$	$39.98 \pm 4.29 ab$
16	V-10170 2.32 SC @ 0.35 MGA/seed	$0.2 \pm 0.1c$	$42.58 \pm 4.48 ab$
17	V-10112 1.77 SC @ 0.25 MGA/seed	$0.3 \pm 0.1c$	$42.58\pm7.01ab$
18	V-10112 1.77 SC @ 0.35 MGA/seed	$0.2 \pm 0.1c$	$38.35 \pm 4.76 ab$
19	V-10194 EC @ 0.25 MGA/seed	$0.4 \pm 0.1c$	$32.83 \pm 3.50 b$
20	V-10194 EC @ 0.30 MGA/seed	$0.0 \pm 0.0c$	$37.38 \pm 4.76ab$

2006 corn flea beetle control on corn with seed treatments in Kansas. Gerald Wilde, Kansas State University, Department of Entomology, Manhattan, KS

Means within a column followed by the same letter are not significantly different (P > 0.05; PROC GLM; Mean comparison by LSD [SAS Institute 2003]).

Reference to specific products is provided solely for informational purposes. Experiments with pesticides on non-labeled crops or pests is part of the insecticide registration process, it does not imply endorsement or recommendation of non-labeled uses of pesticides by Kansas State University. All pesticide use must be consistent with current labels.

Kansas State University Agricultural Experiment Station and Cooperative Extension Service

K-State Research and Extension is an equal opportunity provider and employer. Issued in furtherance of Cooperative Extension Work, Acts of May 8 and June 30, 1914, as amended. Kansas Staten University, County Extension Councils, Extension Districts, and United States Department of Agriculture Cooperating, Fred A. Cholick, Director.