

2015 Sorghum Headworm (Corn Earworm) Insecticide Efficacy Trial – Dickinson Co., KS.

Jeff Whitworth, Holly Schwarting, Department of Entomology, Kansas State University

Pest: Sorghum Headworm (corn earworm), *Helicoverpa zea*

Crop: Sorghum; 11 treatments

Location: Dickinson Co., KS

Growth Stage: Between flowering and milk stage (double cropped after wheat)

Plot Size: 4 rows x 30 ft.

Experimental Design: Randomized Complete Block; 4 Replications

Information: Sprayed with hand sprayer delivering 15 gal/acre at ca.30 psi.

Treatments 1&2 treated on 25 August at bloom initiation - 83°F with no wind. Treatments 3-11 on 31 August at threshold - 87°F

with wind SSE 8mph.

Phytotoxicity: None noted

Evaluation: Pre-treatment counts conducted on 31 August using 1 gal. white

bucket and shaking heads into bucket, averaged 4.6 CEW/10 heads. Evaluations consisted of ten randomly selected heads sampled per plot on 7 September (7 DAT) and 14 September (14 DAT). No larvae were counted 21 September as sorghum was in

the dough stage and larvae had pupated.

2015 Sorghum Headworm (CEW) Insecticide Efficacy Trial – Dickinson Co., KS.

Jeff Whitworth, Holly Schwarting, Department of Entomology, Kansas State University

Treatment Date: 25 or 31 August, 2015

No.	Treatment/Product Name	CEW/10 heads (Mean ± SE)	
		7 Sept. (13 DAT)	14 Sept. (20 DAT)
1	Fastac 100SC @ 3.8 fl.oz./a (at bloom initiation)	0.3 ± 0.3d	2.0 ± 0.8bc
2	Mustang Maxx @ 4.0 fl.oz/a (at bloom initiation)	2.3 ± 0.3b	2.3 ± 0.6b
		(7 DAT)	(14 DAT)
3	Belt SC @ 2.0 oz/a	0.8 ± 0.3cd	0.3 ± 0.3d
4	Belt SC @ 3.0 oz/a	0.0 ± 0.0d	0.5 ± 0.3d
5	Fastac 100SC @ 3.8 fl.oz./a	0.3 ± 0.3d	0.3 ± 0.3d
6	Mustang Maxx @ 4.0 fl.oz/a	2.0 ± 0.4b	0.3 ± 0.3d
7	Diamond @ 9.0 fl.oz./a	0.8 ± 0.3cd	0.0 ± 0.0d
8	Vulcan @ 1.0 pt./a	1.8 ± 0.6bc	1.0 ± 0.6bcd
9	Lorsban Advanced @ 1.0 pt./a	1.8 ± 0.6bc	0.8 ± 0.5c
10	Diamond @ 6 fl.oz./a + Vulcan @ 1.0 pt./a	0.3 ± 0.3d	0.0 ± 0.0d
11	Diamond @ 9 fl.oz./a + Vulcan @ 1.0 pt./a	0.5 ± 0.3d	0.5 ± 0.3d
12	Untreated	8.5 ± 0.3a	4.3 ± 0.6a

Means within a column followed by the same letter are not significantly different (*P*>0.05; PROC ANOVA; Mean comparison by LSD [SAS Institute 2003]).

Reference to specific products is provided solely for informational purposes. Experiments with pesticides on non-labeled crops or pests is part of the insecticide registration process, it does not imply endorsement or recommendation of non-labeled uses of pesticides by Kansas State University. All pesticide use must be consistent with current labels.

Kansas State University Agricultural Experiment Station and Cooperative Extension Service

K-State Research and Extension is an equal opportunity provider and employer. Issued in furtherance of Cooperative Extension Work, Acts of May 8 and June 30, 1914, as amended. Kansas Staten University, County Extension Councils, Extension Districts, and United States Department of Agriculture Cooperating, John Floros, Director.