2017 Sugarcane Aphid Efficacy Trial – Dickinson Co., KS.

Jeff Whitworth, Holly Davis, JR Ewing - Department of Entomology, Kansas State University

Pest: Sugarcane aphid, *Melanaphis sacchari*

Crop: Sorghum, *Sorghum bicolor*, double-cropped after wheat

Planting Date: 25 June, 2017

Location: Dickinson Co., KS

Plot Size: 10 ft. x 30 ft.

Experimental Design: Randomized Complete Block; 4 Replications

Information: Sprayed by hand sprayer delivering 20 gal/acre at ca.30 psi on 13 Sept., 2017 - 93°F, wind 0mph. Treatments 4, 5, and 6 sprayed 2nd time 29 Sept., 2017 - 69°F, wind 0mph

Phytotoxicity: None noted

Evaluation: Counted aphids on 2 uppermost leaves of 5 randomly selected plants/plot (10 leaves total) on 20 Sept. (7 DAT), 27 Sept. (14 DAT), 6 Oct. (7 or 23 DAT), and 19 Oct. (20 or 36 DAT). Pretreatment counts averaged 73 aphids per leaf. DAT = Days After Treatment
2017 Sugarcane Aphid Insecticide Efficacy Trial – Dickinson Co., KS.
Jeff Whitworth, Holly Schwarting, JR Ewing - Department of Entomology
Kansas State University

Treatment Dates: 13 September 2017, 29 September (treatments 4, 5, and 6)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Avg. # aphids/10 leaves 20 Sept (7 DAT)</th>
<th>Avg. # aphids/10 leaves 27 Sept (14 DAT)</th>
<th>Avg. # aphids/10 leaves 6 Oct (7 or 23 DAT)</th>
<th>Avg. # aphids/10 leaves 6 Oct (7 or 23 DAT)</th>
<th>Avg. # winged aphids/10 leaves 6 Oct (7 or 23 DAT)</th>
<th>Avg. # winged aphids/10 leaves 19 Oct (20 or 36 DAT)</th>
<th>Avg. # winged aphids/10 leaves 19 Oct (20 or 36 DAT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Untreated</td>
<td>375.5a</td>
<td>9.3a</td>
<td>86.0a</td>
<td>13.5a</td>
<td>142.3a</td>
<td>24.8a</td>
<td>88.0a</td>
</tr>
<tr>
<td>2 Sivanto Prime @ 4 fl oz/acre</td>
<td>0.0b</td>
<td>1.3b</td>
<td>3.0b</td>
<td>3.8b</td>
<td>20.0b</td>
<td>9.5b</td>
<td>28.8b</td>
</tr>
<tr>
<td>3 Sivanto Prime @ 5 fl oz/acre</td>
<td>0.0b</td>
<td>0.3b</td>
<td>2.5b</td>
<td>3.5b</td>
<td>0.8b</td>
<td>4.0b</td>
<td>19.5b</td>
</tr>
<tr>
<td>4 Inscalis @ 6.0 fl oz/acre followed by Inscalis @ 6.0 fl oz/acre</td>
<td>2.0b</td>
<td>1.8b</td>
<td>11.0b</td>
<td>8.0ab</td>
<td>19.5b</td>
<td>5.5b</td>
<td>21.8b</td>
</tr>
<tr>
<td>5 Inscalis @ 6.0 fl oz/acre followed by Sivanto @ 6.0 fl oz/acre</td>
<td>0.3b</td>
<td>1.0b</td>
<td>4.5b</td>
<td>8.3ab</td>
<td>2.0b</td>
<td>3.0b</td>
<td>8.8b</td>
</tr>
<tr>
<td>6 Sivanto @ 6.0 fl oz/acre followed by Inscalis @ 6.0 fl oz/acre</td>
<td>0.0b</td>
<td>0.5b</td>
<td>4.5b</td>
<td>11.8ab</td>
<td>0.0b</td>
<td>3.8b</td>
<td>15.5b</td>
</tr>
</tbody>
</table>

Means within a column followed by the same letter are not significantly different (P>0.05; PROC ANOVA; Mean comparison by LSD [SAS Institute 2003]).

Reference to specific products is provided solely for informational purposes. Experiments with pesticides on non-labeled crops or pests is part of the insecticide registration process, it does not imply endorsement or recommendation of non-labeled uses of pesticides by Kansas State University. All pesticide use must be consistent with current labels.

Kansas State University Agricultural Experiment Station and Cooperative Extension Service